Structure, Thermal Behavior and IR Investigation of a New Organic Cyclohexaphosphate

Miriem Charfi and Amor Jouini ${ }^{1}$
Laboratoire de Chimie du Solide, Département de Chimie Faculté des Sciences, Université du Centre, Monastir, 5000, Tunisia

Received April 17, 1996; in revised form July 18, 1996; accepted July 24, 1996

Abstract

Physicochemical properties of the bis[1-(2-ammoniumethyl) piperazinium] cyclohexaphosphate hexahydrate are discussed on the basis of X-ray crystal structure investigation. $\left[\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is triclinic, $P \overline{1}$, with $a=9.714(2) \AA$, $b=10.538(2) \AA, c=8.095 \AA, \alpha=87.88(2)^{\circ}, \beta=93.48(2)^{\circ}$, $\gamma=83.20(1)^{\circ}$, and $Z=1$. The structure has been solved using direct methods and refined to a reliability R factor of 0.0307 for 2291 reflections. The compound is characterized by infinite layers of inorganic polyanions approximately parallel to the (001) planes. Organic cations are sandwiched between these layers. $\mathrm{OW}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link $\mathrm{P}_{6} \mathrm{O}_{18}$ groups, respectively, in a layer and in successive layers as to build a framework in a three-dimensional way. Two water molecules leave this compound at room temperature giving a stable tetrahydrate phase. The structure reorganization is discussed on the basis of OW H-bonds by TG-DTA and DSC thermal analyses. The reported IR study is supported by a detailed theoretical group analysis applied to $\mathrm{P}_{6} \mathrm{O}_{18}$ with $D_{6 h}$ ideal local symmetry. © 1996 Academic Press, Inc.

I. INTRODUCTION

The recent crystal chemistry investigation of compounds resulting from encapsulation of organic molecules between chains or layers of cyclohexaphosphate anions does not provide a sufficient number of representatives for comparison of their basic chemical properties with those of other compounds such as cyclotriphosphates or cyclotetraphosphates. The lack of a good starting material and of a reliable process producing single crystals of organic cyclohexaphosphates are probably the main reasons for the poorness of this class of organic condensed phosphates. Ever since the process for preparing $\mathrm{Li}_{6} \mathrm{P}_{6} \mathrm{O}_{18}$ (1) as starting material has been known, the use of ion-exchange resins became valuable for the production of organic cyclohexaphosphates. The two cyclohexaphosphates with linear organic molecules $\left[\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2) and $\left[\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}\right]_{3} \mathrm{P}_{6} \mathrm{O}_{18}$. $6 \mathrm{H}_{2} \mathrm{O}$ (3) were obtained by this way. The present work

[^0]deals with crystal structure determination and physicochemical properties of a new organic cyclohexaphosphate prepared with the same interaction route. The linear organic molecule is replaced by a polarizable cyclic organic cation inducing an isotropic crystal growth which reflects the role played by the strong three-dimensional hydrogenbond network.

II. CRYSTAL CHEMISTRY

II.1. Chemical Preparation

Most of the well characterized organic cyclohexaphosphates were prepared in two steps: (i) a dilute solution of cyclohexaphosphosphoric acid ($0.035 \mathrm{M} /$ liter) was prepared from 12 g of $\mathrm{Li}_{6} \mathrm{P}_{6} \mathrm{O}_{18}$ using ion-exchange resins (Amberlite IR 120), and (ii) the acid produced is immediately neutralized by the stoichiometric amount of 1-(2aminoethyl) piperazin $\left(6 \mathrm{~cm}^{3}\right.$, density 0.981$)$. Schematically the reaction is

$$
2 \mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3}+\mathrm{H}_{6} \mathrm{P}_{6} \mathrm{O}_{18} \xrightarrow{(\mathrm{H} 2 \mathrm{O})}\left[\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}
$$

The resulting solution, slowly evaporated at room temperature for several weeks, leads to transparent, thin single crystals not very stable under normal conditions of temperature and humidity. Indeed, the title compound is converted to a tertrahydrate phase over a six month period under normal conditions.

II.2. Crystal Data and Structure Determination

The unit-cell dimensions have been measured and refined using a set of 25 high-angle reflections collected with an Enraf-Nonius CAD4 diffractometer. The average density, measured at room temperature using toluene as pycnometric liquid, is in agreement with the calculated density. The cell contains one formula unit of the title compound. The parameters used for X-ray data collection, crystal structure determination, and final results are reported in Table 1. The final atomic coordinates and the U equivalent

TABLE 1
Main Crystallographic Features, X-Ray Diffraction Data Collection
Parameters of $\left[\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot \mathbf{6} \mathrm{H}_{2} \mathrm{O}$, and Its Finals Results

Formula: $\left(\mathrm{C}_{6} \mathrm{H}_{19} \mathrm{~N}_{3}\right)_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
Crystal system: triclinic
$a=9.7149$ (2) , $b=10.538$ (2)
$c=8.095(2) \AA, \alpha=87.88(2)^{\circ}$
$\beta=93.48(2)^{\circ}, \gamma=83.20(1)^{\circ}$
$\rho_{\text {call }}, \rho_{\text {mes. }}=1.71,1.64 \mathrm{~g} \mathrm{~cm}^{-3}$
Linear absorption factor:
Morphology:
Crystal size:
I. Crystal data
$F w=846.38$
Space group: $P \overline{1}$
$V=820.5(3) \AA^{3}$
$Z=1$
$F(000)=444$
$\mu(\mathrm{Ag} K \alpha)=0.430 \mathrm{~mm}^{-1}$
elongated prism
$0.17 \times 0.20 \times 0.28 \mathrm{~mm}$
II. Intensity measurements

Temperature: 293 K
Diffractometer: Nonius CAD4
Monochromator: graphite plate
Wavelength: $\operatorname{MoK} \alpha(0.71069 \AA)$
Scan mode: $\omega / 2 \theta$
Scan width: 1.20°
Variable scan speed
$T_{\text {max. }}$ per scan: 60 s
Theta range:
$3^{\circ}-25^{\circ}$
Background measuring time:
Measurement area: $\pm h, \pm k, l$
$T_{\text {max. }} / 2$
Number of scanned reflections:
$h_{\text {max. }}=11, k_{\text {max. }}=12, l_{\text {max. }}=9$
Number of unique reflections:
3109
$2888\left(R_{\text {int. }}=0.012\right)$
One reference reflection:
every 2 hr , intensity
decay: 0.58%
III. Structure determination

Lorentz and polarization corrections
Structure determination:
Structure refinement with
Unique reflections included:
Refined parameters: 314
All H atom parameters refined
Refinement on F
$S=1.122$
Secondary extinction coefficient:
Unweighted R factor $=0.0307$
$W=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0317 P)^{2}+\right.$ $1.2088 P$]
$\Delta \rho_{\max }=0.393 \mathrm{e}^{-3}$

No absorption correction
Direct Methods: SHELXS86 (4)
SHELXL93 (5) on PC Computer
2291 with $I>2 \sigma(I)$
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4, 2, 6, 8 and 6, $1,1,4)$
0.0084 (24)
weighted R factor $W R=0.1140$
$P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
Largest shift/error $=0.001$
temperature factors (isotropic for H atoms) are given in Table 2. The values of the thermal anisotropic displacement parameters for nonhydrogen atoms and the list of observed and calculated structure factors are available upon request to the authors.

II.3. Thermal Behavior

Setaram thermoanalyzers, TG-DTA92 and DSC92, are used to perform thermal treatment on samples of the title compound. The TG-DTA experiments are made with 27.5 mg samples in an open alumina crucible. The DSC analysis is carried out using weighted 10 mg samples sealed in an aluminum DSC crucible. In both techniques, samples are heated in air with a $5 \mathrm{~K} / \mathrm{min}$ heating rate, from 300 to 625 K ; an empty crucible is used as reference.

II.4. Infrared Spectroscopic Investigation

Infrared spectra were recorded using a Perkin-Elmer 983 spectrometer. Samples were dispersed in KBr and scanning was performed in the $4000-200 \mathrm{~cm}^{-1}$ spectral domain with a resolution of about $3 \mathrm{~cm}^{-1}$.

III. STRUCTURE DESCRIPTION

The atomic arrangement can be described by layers of the inorganic entities approximately parallel to the (\mathbf{a}, \mathbf{b}) planes. Cohesion between these planes is established by H bonds from the organic entities. Figure 1 gives a projection, along the \mathbf{b} direction, of this atomic arrangement. Adjacent $\mathrm{P}_{6} \mathrm{O}_{18}$ groups are linked pairwise with OW1 water molecules so as to form an infinite chain spreading along the a

TABLE 2
Final Atomic Coordinates and $U_{\text {eq }}$ ($U_{\mathrm{is} 0}$ for H atoms) of $\left[\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot \mathbf{6 H} \mathrm{H}_{2} \mathrm{O}$

Atoms	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	$U_{\text {eq. }}\left(\AA^{2}\right)$
P1	0.6578(1)	0.7872(1)	0.0979(1)	0.0202(2)
P2	0.7684(1)	0.0281(1)	0.1412(1)	0.0202(2)
P3	0.4544(1)	0.7648(1)	-0.1831(1)	0.0206(2)
OE11	0.6371(2)	0.7819(2)	0.2771(3)	0.0281(5)
OE12	0.7610(2)	0.6917(2)	0.0277(3)	0.0285(5)
OL12	0.6929(2)	0.9270(2)	0.0379(3)	0.0272(5)
OL13	0.5085(2)	0.7866(2)	0.0051(3)	0.0299(6)
OE21	0.8232(2)	0.1145(2)	0.0185(3)	0.0277(5)
OE22	0.8638(2)	0.9631(2)	0.2751(3)	0.0284(5)
OL23	0.6408(2)	0.1020(2)	0.2283(3)	0.0270(5)
OE31	0.3684(3)	0.6593(2)	-0.1749(3)	0.0351(6)
OE32	0.5696(2)	0.7579(2)	-0.2949(3)	0.0313(6)
OW1	0.9423(3)	0.7951(3)	-0.1742(4)	0.0370(6)
OW2	0.1255(4)	0.6116(3)	-0.3153(4)	0.0509(8)
OW3	0.8119(3)	0.6075(3)	0.4792(4)	0.0458(7)
N1	0.7583(3)	0.5111(2)	-0.2161(4)	0.0283(6)
N2	0.7825(3)	0.2399(2)	-0.2775(3)	0.0196(6)
N3	0.7473(3)	0.9109(3)	-0.4228(4)	0.0272(6)
C1	0.8836(4)	0.4235(3)	-0.1571(5)	0.0310(8)
C2	0.9069(3)	0.3127(3)	-0.2676(4)	0.0257(7)
C3	0.6575(4)	0.3287(3)	-0.3396(5)	0.0283(7)
C4	0.6336(4)	0.4410(4)	-0.2273(5)	0.0343(8)
C5	0.8095(3)	0.1271(4)	-0.3809(4)	0.0241(7)
C6	0.6949(4)	0.0406(4)	-0.3714(4)	0.0245(7)
H1W1	0.901(5)	0.773(5)	-0.103(6)	0.06(2)*
H2W1	0.011(6)	0.841(5)	-0.129(7)	0.08(2)*
H1W2	0.200(5)	0.627(4)	-0.266(5)	0.04(1)*
H2W2	0.064(7)	0.675(6)	-0.268(8)	0.11(2)*
H1W3	0.836(4)	0.548(4)	0.420(5)	0.03(1)*
H2W3	0.755(5)	0.661(5)	0.413(6)	0.05(1)*
H1N1	0.743(4)	0.575(4)	-0.151(5)	0.04(1)*
H2N1	0.772(4)	0.549(4)	-0.322(4)	0.04(1)*
HN2	0.777(3)	0.213(3)	-0.178(5)	0.02(9)*
H1N3	0.676(3)	0.861(3)	-0.402(4)	0.01(7)*
H2N3	0.8824(5)	0.881(4)	-0.353(6)	0.04(1)*
H3N3	0.770(4)	0.914(4)	-0.520(6)	0.04(1)*
H1C1	0.860(4)	0.396(4)	-0.047(5)	0.03(1)*
H2C1	0.963(4)	0.472(4)	-0.163(5)	0.03(1)*
H1C2	0.985(4)	0.251(3)	-0.224(4)	0.03(1)*
H2C2	0.923(4)	0.344(3)	-0.381(5)	0.03(1)*
H1C3	0.579(4)	0.291(3)	-0.333(4)	0.02(1)*
H2C3	0.670(4)	0.359(4)	-0.453(5)	0.03(1)*
H1C4	0.551(4)	0.500(4)	-0.274(5)	0.04(1)*
H2C4	0.620(5)	0.410(4)	-0.120(6)	0.05(1)*
H1C5	0.894(4)	0.083(4)	-0.344(5)	0.02(1)*
H2C5	0.814(4)	0.153(4)	-0.485(6)	0.04(1)*
H1C6	0.667(3)	0.033(3)	-0.275(4)	0.01(1)*
H2C6	0.609(4)	0.075(4)	-0.439(5)	0.04(1)*

Note. Starred atoms were refined isotropically. e.s.d.s are given in parentheses. $U_{\text {eq. }}=1 / 3 \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} a_{i} a_{j}$.
direction. The remaining OW2 and OW3 link infinite chains to give rise to infinite layers centered approximately by the (001) planes and depicted in Fig. 2. In fact, the water molecules of this layer are not, as it is most frequently
observed, dispersed inside the atomic arrangement. They are assembled in groups of six, building an irregular hexagon $2[\mathrm{OW} 2 \cdots \mathrm{OW} 1 \cdots \mathrm{OW} 3]$, located around the (0 , $1 / 2,1 / 2$) inversion center of the unit cell and with the following edge lengths: OW1 \cdots OW2 $=2.794(4) \AA$, OW1 \cdots OW3 $=3.736(4) \AA$, and OW2 \cdots OW3 $=$ 2.730(5) A. The average OW \cdots OW \cdots OW angle, in this hexagonal cluster, is $118.3(5)^{\circ}$. It is worth noting that among the 12 H atoms belonging to the water molecules inside this hexagon, only 4 establish hydrogen bonds between OW1, OW2, and OW3. The remaining ones are involved in H bonds with external oxygen atoms of the $\mathrm{P}_{6} \mathrm{O}_{18}$ groups as to build the layer described above. Similar polygonal clusters of water molecules have been observed in other condensed phosphates: an almost regular pentagon in $\mathrm{Li}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (6), hexagons of symmetry $\overline{1}$ in $\mathrm{Ni}\left(\mathrm{NH}_{4}\right)_{2} \quad \mathrm{P}_{4} \mathrm{O}_{12} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (7) and of symmetry $\overline{3}$ in $\mathrm{Cd}_{3} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (8). The centrosymmetric ring anion $\mathrm{P}_{6} \mathrm{O}_{18}^{6-}$ is located around the inversion center at $(1 / 2,0,0)$ and so is built up by only three independent PO_{4} tetrahedra.

III.1. The $P_{6} O_{18}$ Geometry

Despite the small number of representatives, the examination of the main geometric features of the $\mathrm{P}_{6} \mathrm{O}_{18}$ rings seems worthwhile. The $\mathrm{P}-\mathrm{P}$ distances and $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angles are similar to what is commonly observed in other condensed phosphoric anions, mainly in $\mathrm{P}_{3} \mathrm{O}_{9}$ and $\mathrm{P}_{4} \mathrm{O}_{12}$. The average of the $\mathrm{P}-\mathrm{P}$ distances is 2.927 (1) \AA and the range of the observed values is narrow, the extreme values being 2.896(1) and 2.956(1) A. The P-O-P angles, in this group, have typical values of condensed phosphoric anions, with an average value of $131.8(1)^{\circ}$ and extrema of $128.8(1)^{\circ}$ and $134.3(2)^{\circ}$. Meanwhile, if we compare the observed $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles in the $\mathrm{P}_{6} \mathrm{O}_{18}$ group with those in well-represented types of phosphoric rings, such as $\mathrm{P}_{3} \mathrm{O}_{9}$ and $\mathrm{P}_{4} \mathrm{O}_{12}$, we observe a very large deviation from the ideal value, 120°. In $\mathrm{P}_{3} \mathrm{O}_{9}$ and $\mathrm{P}_{4} \mathrm{O}_{12}$ groups, the $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles never depart significantly from their ideal values, $60 \pm 2^{\circ}$ for $\mathrm{P}_{3} \mathrm{O}_{9}$ (9) and $90 \pm 4^{\circ}$ for $\mathrm{P}_{4} \mathrm{O}_{12}$ (9). In contrast, these $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles in the case of $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion exhibit very large deviations from the 120° ideal value, the average angle being $111.33(4)^{\circ}$ with extrema of $103.99(4)^{\circ}$ and 119.14°. It is to be noted that there is a rather regular distribution of the $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles, in this compound, with 5.15° between extrema values. The largest difference between extrema, observed in the $\mathrm{P}_{6} \mathrm{O}_{18}$ anion with $\overline{1}$ internal symmetry, like in the title compound is of 50° (10), where the lowest one, close to zero, is found in the $\mathrm{P}_{6} \mathrm{O}_{18}$ group with high symmetry $\overline{3}$ (11), and built by one PO_{4} tetrahedron. Thus the lowest strain allows this group to adopt more configurations than the $\mathrm{P}_{3} \mathrm{O}_{9}$ and the $\mathrm{P}_{4} \mathrm{O}_{12}$ groups. The main geometrical features of $\mathrm{P}_{6} \mathrm{O}_{18}$ group are reported in Table 3.

FIG. 1. Projection along the \mathbf{b} direction of the atomic arrangement. $\mathrm{P}_{6} \mathrm{O}_{18}$ groups are given with a polyhedral representation. By order of decreasing sizes, circles represent oxygen water molecules and nitrogen atoms. The black and white smaller circles indicate carbon and hydrogen atoms. Hydrogen bonds are denoted by full and dotted lines.

FIG. 2. Projection along the \mathbf{c} direction of the anionic layer with $\mathrm{P}_{6} \mathrm{O}_{18}$ groups in polyhedral representation and oxygen water molecules with large circles. Hydrogen bonds are denoted by full and dotted lines.

TABLE 3
Main Interatomic Distances ((\AA) and Bond Angles $\left({ }^{\circ}\right)$ in the $\mathrm{P}_{6} \mathrm{O}_{18}$ Group

$\mathrm{P}(1) \mathrm{O}_{4}$ tetrahedron				
P1	OE11	OE12	OL12	OL13
OE11	1.477(2)	120.1(1)	110.8(1)	106.5(1)
OE12	2.568 (3)	1.478(2)	107.0(1)	110.4(1)
OL12	2.547(3)	2.495(3)	1.615(2)	100.3(1)
OL13	2.461(3)	2.530(3)	2.463(3)	1.593(2)
$\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedron				
OE21	1.487(2)	119.1(1)	106.7(1)	110.6(1)
OE22	2.554(3)	1.475(2)	110.9(1)	106.6(1)
OL12	2.475(3)	2.531(3)	1.597(2)	101.4(1)
OL23	2.539(3)	2.468(3)	2.474 (3)	$\underline{1.600(2)}$
$\mathrm{P}(3) \mathrm{O}_{4}$ tetrahedron				
OE31	1.469(2)	119.4(1)	106.5(1)	110.5(1)
OE32	2.546(3)	1.478(2)	111.4(1)	106.8(1)
OL13	2.472(3)	$2.556(3)$	1.615(2)	100.8(1)
OL23	2.526(3)	2.475(3)	2.480(3)	$\underline{1.604(2)}$
	$\begin{aligned} & \mathrm{P} 1-\mathrm{P} 2 \\ & \mathrm{P} 1-\mathrm{P} 3 \\ & \mathrm{P} 2-\mathrm{P} 3 \end{aligned}$	(1) (1) (1)	-P3 119.14 -P3 111.03 -P2 103.99	
$\begin{aligned} & \text { P1-OL12-P2 } 128.8(1) \\ & \text { P1-OL13-P3 134.3(1) } \\ & \text { P2-OL23-P3 132.3(1) } \end{aligned}$				

Note. e.s.d.s are given in parentheses.

III.2. The Organic Group

Organic cations are sandwiched between (001) planes. The anionic layers parallel to the (\mathbf{a}, \mathbf{b}) plane are stabilized by the hydrogen bond network. Each organic trication is anchored onto successive layers through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds. Taking into account the main work on structural evidence of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds in molecular crystals (12-15), the $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions contribute, to a lesser degree than $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, to the cohesion of the structure. Thus, three types of hydrogen bonds occur in this atomic arrangement: (i) $\mathrm{OW}-\mathrm{H} \cdots \mathrm{O}$, including 6 relatively short contacts with $\mathrm{H} \cdots \mathrm{O}$ distances ranging from 1.83(5) to 2.01(6) \AA, ensure the cohesion between anions in the layer; (ii) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ involving 6 short contacts with $\mathrm{H} \cdots \mathrm{O}$ distances, in the range 1.77(5)-2.02(5) \AA, link parallel layers; (iii) $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds are formed by 12 relatively weak contacts, since the $\mathrm{H} \cdots \mathrm{O}(\mathrm{N})$ distances, ranging from 2.37 (4) to $2.93(4) \AA$. The third type of hydrogen bond, linking successive anionic layers, increases the structural cohesion. The mean value of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angle 145.9° is smaller than the mean $\mathrm{O}(\mathrm{N})-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond angle 167.2°. This may be ascribed to the fact that the
$\mathrm{O}(\mathrm{N})-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shorter than the $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ contacts. Consequently, the $\mathrm{O}(\mathrm{N}) \cdots \mathrm{O}$ van der Waals repulsion is likely to be larger than the $\mathrm{C} \cdots \mathrm{O}$ repulsion for a given value of the $\mathrm{O}(\mathrm{N}, \mathrm{C})-\mathrm{H} \cdots \mathrm{O}$ angle. The $\mathrm{O}(\mathrm{N}) \cdots \mathrm{O}$ distance, frequently designed in the literature as hydrogen bond criteria, is of lesser interest, thus, in the geometric characterization of hydrogen bond, the focus must be rather pointed on the $\mathrm{H} \cdots \mathrm{O}$ distance and on the $\mathrm{O}(\mathrm{N}, \mathrm{C})-\mathrm{H} \cdots \mathrm{O}$ angle than the $\mathrm{O}(\mathrm{N}) \cdots \mathrm{O}$ distance, It is to be noted that the C 6 involves its H atoms with two oxygen atoms (OL) linking phosphores in the $\mathrm{P}_{6} \mathrm{O}_{18}$ ring. This fact is rarely observed in so far as OL atoms are uncommonly found in metallic cation polyhedra coordinations of inorganic phosphates. The main geometric features of the organic groups and of the hydrogen bonds are assigned in Tables 4 and 5.

III.3. The Water Molecule Coordination

It is well known that the preferred hydrogen bond coordination of the water molecules is tetrahedral or planar trigonal. However many different configurations, with lower or higher coordination, are observed in solid state chemistry. Taking into account the $\mathrm{C}-\mathrm{H}-\mathrm{OW}$ interactions,

TABLE 4
Main Interatomic Distances (\AA) and Bond Angles $\left({ }^{\circ}\right)$ in the Organic Group

N1-H1N1 0.88(4)			
N1-H2N1 0.95(4)		H1N1-N1-H2N1 106(4)	
N2-HN2 0.85(4)			
N3-H1N3 0.94(3)		H1N3	N3 109(3)
N3-H2N3 0.93(5)		H1N3	N3 116(3)
N3-H3N3 0.83(5)		H2N3	N3 110(4)
C1-H1C1 0.98(4)			
C1-H2C1 0.98(4)		H1C1	Cl 117(3)
C2-H1C2 0.98(4)			
C2-H2C2 0.99(4)		H1C2	C2 106(2)
C3-H1C3 0.91(4)			
C3-H2C3 0.98(4)		H1C3	C3 112(3)
C4-H1C4 1.00(4)			
C4-H2C4 0.94(5)		H1C	C4 111(4)
C5-H1C5 0.93(3)			
C5-H2C5 0.88(4)		H1C3	C3 109(3)
C6-H1C6 0.85(4)			
C6-H2C6 0.99(4)		H1C	C4 103(3)
$\mathrm{N} 1-\mathrm{C} 1$	1.481(5)	N1-C1-C2	111.2(3)
C1-C2	1.501(5)	C1-C2-N2	110.9(3)
C2-N2	1.506(4)	C2-N2-C3	109.1(3)
N2-C3	1.491(4)	N2-C3-C4	110.8(3)
C3-C4	1.523(5)	C3-C4-N1	110.3(3)
$\mathrm{C} 4-\mathrm{N} 1$	$1.492(5)$	C4-N1-C1	110.6(3)
N2-C5	1.486(4)	C2-N2-C5	110.3(2)
C5-C6	1.524(5)	C3-N2-C5	113.1(3)
C6-N3	1.485(4)	N2-C5-C6	111.3(3)
		C5-C6-N3	109.4(3)

Note. e.s.d.s are given in parentheses.

TABLE 5
Bond Lengths (\AA) and Angles $\left({ }^{\circ}\right)$ in the Hydrogen-Bonding Scheme

	$\mathrm{N}(\mathrm{O}, \mathrm{C})-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{O}$	$\mathrm{N}(\mathrm{O}, \mathrm{C}) \cdots \mathrm{O}$	$\mathrm{N}(\mathrm{O}, \mathrm{C})-\mathrm{H} \cdots \mathrm{O}$
N1-H1N1 \cdots OE12	$0.89(4)$	$1.95(4)$	$2.794(4)$	$162(4)$
N1-H2N1 \cdots OW3	$0.95(4)$	$1.79(4)$	$2.735(4)$	$174(4)$
N2-HN2 \cdots OE21	$0.85(4)$	$1.87(4)$	$2.678(3)$	$159(3)$
N3-H1N3 \cdots OE32	$0.94(3)$	$1.82(3)$	$2.721(4)$	$161(3)$
N3-H2N3 \cdots OW1	$0.93(5)$	$1.92(5)$	$2.817(4)$	$163(4)$
N3-H3N3 \cdots OE22	$0.83(5)$	$2.02(5)$	$2.819(4)$	$162(4)$
OW1-H1W1 \cdots OE12	$0.78(6)$	$2.01(6)$	$2.763(4)$	$163(5)$
OW1-H2W1 \cdots OE21	$0.92(6)$	$1.92(6)$	$2.818(4)$	$163(5)$
OW2-H1W2 \cdots OE31	$0.84(5)$	$1.83(5)$	$2.667(4)$	$176(4)$
OW2-H2W2 \cdots OW1	$0.95(7)$	$1.84(7)$	$2.794(4)$	$179(6)$
OW3-H1W3 \cdots OW2	$0.82(4)$	$1.92(4)$	$2.730(5)$	$168(4)$
OW3-H2W3 \cdots OE11	$0.88(5)$	$1.88(5)$	$2.764(4)$	$178(4)$
C1-H1C1 \cdots OW2	$0.98(4)$	$2.93(4)$	$3.836(5)$	$155(3)$
C1-H2C1 \cdots OW2	$0.98(4)$	$2.61(4)$	$3.517(5)$	$154(3)$
C2-H1C2 \cdots OE22	$0.98(4)$	$2.60(4)$	$3.451(4)$	$145(3)$
C2-H2C2 \cdots OW3	$0.99(4)$	$2.84(4)$	$3.479(5)$	$123(3)$
C3-H1C3 \cdots OE11	$0.91(4)$	$2.38(4)$	$3.275(4)$	$169(3)$
C3-H2C3 \cdots OW2	$0.98(4)$	$2.85(4)$	$3.680(5)$	$143(3)$
C4-H1C4 \cdots OE31	$1.00(4)$	$2.49(4)$	$3.303(5)$	$138(3)$
C4-H2C4 \cdots OE31	$0.94(5)$	$2.46(5)$	$3.388(3)$	$168(4)$
C5-H1C5 \cdots OE22	$0.93(4)$	$2.37(4)$	$3.256(4)$	$160(3)$
C5-H2C5 \cdots OE22	$0.88(4)$	$2.86(4)$	$3.367(4)$	$118(3)$
C6-H1C6 \cdots OL12	$0.85(4)$	$2.71(4)$	$3.483(4)$	$152(3)$
C6-H2C6 \cdots OL23	$0.99(4)$	$2.74(4)$	$3.279(4)$	$115(3)$
H1W1-OW1-H2W1	$108(5)$	H1W2-OW2-H2W2	$98(5)$	
	H1W3-OW3-H2W3	$104(4)$		

Note. e.s.d.s are given in parentheses.
four water molecules 2(OW1 + OW2) have a tetrahedral coordination, and the other two 2OW3 are rather in planar trigonal configuration and are less strongly bonded to the atomic arrangement. The water molecule OW1 (Fig. 3)

FIG. 3. Schematic H-bond scheme in the water molecule coordination.
accepts two short hydrogen bonds, one from the NH_{3}^{+}cation, the other from OW2, to form an almost regular tetrahedron, whereas the OW2, in a rather distorted tetrahedron, accepts a short hydrogen bond from OW3 and a relatively short $\mathrm{C} 1-\mathrm{H} \cdots \mathrm{OW} 2$ interaction. Neglecting the very weak $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{OW} 3$ interaction, the coordination of OW3 would be regarded as roughly trigonal-planar, whereas it is actually in very distorted tetrahedral coordination. These observations suggest that CH donors are able to complete the tetrahedral hydrogen bond geometries of water molecules if a sufficient number of OH and NH is not available. However, it is to be noted that, in this case, the CH contact in the local environment of OW3 is weak since the corresponding distance $\mathrm{H} \cdots \mathrm{O}$ is $2.84 \AA$ (cf. Fig. 3).

IV. THERMAL BEHAVIOR

The TG-DTA thermograms depicted in Fig. 4 are obtained on a six-month-old specimen of the title compound. The removal of most of the water molecules, observed in the temperature range $339-423 \mathrm{~K}$, is related to the first endothermic peak on the DTA curve with maximum elimination at 398 K . With further increase in temperature, the sample loses the remaining water and melts in one step with maximum temperature at 490 K . Indeed the TG curve

FIG. 4. TG-DTA analysis on the tetrahydrate phase resulting from the dehydration of $\left[\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ under normal conditions.
shows, after the first $\mathrm{H}_{2} \mathrm{O}$ elimination, a rather small and continuous weight loss (0.68%) from 421 K to the upper limit of the melting temperature. Thus, the second endothermic peak must be regarded, in fact, as a combination of the remaining $\mathrm{H}_{2} \mathrm{O}$ elimination and melting of the anhydrous compound. This melting point, occurring without decomposition, is confirmed by an additional thermal treatment in a separate carbolite furnace with run heating of $5 \mathrm{~K} / \mathrm{min}$ from room temperature to 493 K , the resulting compound being a white liquid. However, only four water molecules can be deduced from the TG curve. On the other hand, the DSC thermogram registered on ground fresh samples (Fig. 5a) exhibits also two endothermic effects. Nevertheless, the first shouldered one, corresponding to the dehydration, in the range from 380 to 410 K , shows the existence of more than one type of water molecule. The overall ΔH of the dehydration is $179.78 \mathrm{~kJ} / \mathrm{mol}$. The second endothermic peak occurring in the temperature range $475-504 \mathrm{~K}$ corresponds to the melting with a $\Delta \mathrm{H}$ fusion of $26.649 \mathrm{~kJ} / \mathrm{mol}$. Furthermore, the DSC thermogram (Fig. 5b) recorded on a six-month-old sample reveals some interesting features, the most remarkable being that the left shoulder of the endothermic peak dehydration, mentioned to be at 386 K (Fig. 5a), is split into an inflection at 380 K and a symmetric intense peak at 390 K , whereas the intense endothermic peak at 405 K is strongly decreased. The derivative of the heat flow emphasizes clearly
the water molecule reorganization at room temperature. Having in mind the number of water molecules located in the structure determination on a fresh crystal and on the basis of the thermal analysis, one can deduce that when the compound was left standing for an extended period of time under normal conditions it lost two water molecules. Thereafter, a structural rearrangement was performed involving the reorganization of hydrogen bonds in the sphere of coordination of the remaining water molecules. Thus, the thermal behavior confronted with the results of this crystal structure (cf. Section III.3), having crystallographic quality factor <0.031, can probably explain the departure of the two water molecules from the title compound under ambient conditions over a six month period.

V. IR INVESTIGATION

Infrared data on cyclohexaphosphates are very rare and only two articles dealing with this class have been reported. They described the IR spectra of $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion with a mineral cation in $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 21 \mathrm{H}_{2} \mathrm{O}$ (16) and with an organic cation in $\left[\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2). It is worth noting that the IR spectrum in the above organic compound concerns an isolated $\mathrm{P}_{6} \mathrm{O}_{18}$ ring in the cell whence the coupling between anions is avoided. Also, this spectrum is supported by a detailed theoretical group analysis applied to an isolated $\mathrm{P}_{6} \mathrm{O}_{18}$ group in its ideal $D_{6 h}$ local sym-

FIG. 5. DSC curves for polycrystalline samples of (a) $\left[\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and (b) $\left[\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.
metry. Meanwhile some mistakes in the internal modes, calculated out, are slid, in this case, and will be corrected here. However some theoretical studies of the cyclohexasilicon group $\mathrm{Si}_{6} \mathrm{P}_{6} \mathrm{O}_{18}(17-20)$ are needed for an objective
assignment. The $\mathrm{P}_{6} \mathrm{O}_{18}$ rings observed to date exhibit seven types of internal symmetry with $C_{i}, C_{2}, C_{s}, C_{2 h}, C_{3}, S_{6}$, or C_{1} internal symmetry. There are seven examples of a ring with a higher symmetry S_{6} whereas none has the ideal local

FIG. 6. IR spectrum of polycrystalline $\left[\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

TABLE 6
Vibrational Frequencies and Assignment in the $\mathrm{P}_{6} \mathrm{O}_{18}$ Stretching Region

Motions
IR Ra Modes
$\mathrm{P}_{6} \mathrm{O}_{18}: D_{6 h}$

$$
\begin{aligned}
& \nu_{\mathrm{as}} \mathrm{OPO}^{-}\left\{\begin{array}{lll}
-E_{2 u} & \longrightarrow & A_{u}-+ \\
-A_{u}-+ \\
+-A_{2 u} & \longrightarrow & A_{u}-+ \\
--B_{2 g} & A_{g}+- \\
-+E_{1 g} & \longrightarrow & A_{g}+- \\
A_{g}+-
\end{array}\right\}\left\{\begin{array}{l}
1261 \mathrm{vs} \\
1247 \mathrm{~s} \\
192 \mathrm{w} \\
\\
\end{array}\right\} \\
& \nu_{\mathrm{s}} \mathrm{OPO}^{-}\left\{\begin{array}{lll}
--B_{1 u} & \longrightarrow & A_{u}-+ \\
-+A_{1 g} & \longrightarrow & A_{g}+- \\
-+E_{2 g} & \longrightarrow & A_{g}+- \\
-A_{g}+- \\
+E_{1 u} & \longrightarrow & A_{u}-+ \\
A_{u}-+
\end{array}\right\}\left\{\begin{array}{l}
1151 \mathrm{w} \\
\\
\\
1131 \mathrm{w} \\
1116 \mathrm{~s}
\end{array}\right\} \\
& \underset{\nu(\mathrm{C}-\mathrm{C})}{\mathrm{v}_{\mathrm{as}} \mathrm{POP}}+\underset{+}{ }\left\{\begin{array}{lll}
-+E_{1 u} & \longrightarrow & A_{u}-+ \\
--B_{2 u} & A_{u}-+ \\
--A_{2 g} & A_{u}-+ \\
+-E_{2 g} & A_{g}+- \\
-A_{g}+-
\end{array}\right\}\left\{\begin{array}{l}
1061 \mathrm{~s} \\
1045 \mathrm{sh} \\
1018 \mathrm{w} \\
\\
997 \mathrm{w} \\
946 \mathrm{vs}
\end{array}\right\}
\end{aligned}
$$

Note. vs, very strong; s, strong; vw, very weak; w, weak; sh, shoulder.
symmetry $D_{6 h}$ among the presently known representatives. A ring of the type $A_{6} B_{18}$ has an ideal symmetry $D_{6 h}$ and, from the 66 normal modes of vibration, classified in this point group as $\Gamma_{\text {int. }}=4 A_{1 g}+2 A_{2 g}+3 B_{1 g}+2 B_{2 g}+$ $4 E_{1 g}+7 E_{2 g}+A_{1 u}+3 A_{2 u}+3 B_{1 u}+4 B_{2 u}+6 E_{1 u}+5 E_{2 u}$, 24 are stretching modes $\Gamma_{\text {str. }}=A_{2 u}+B_{2 g}+E_{1 g}+E_{2 u}+$ $2 A_{1 g}+2 B_{1 u}+3 E_{2 g}+3 E_{1 u}+A_{2 g}+B_{2 u}$ and 42 are bending modes $\Gamma_{\text {ben. }}=2 A_{2 u}+B_{2 g}+3 E_{1 g}+4 E_{2 u}+2 A_{1 g}+$ $B_{1 u}+4 E_{2 g}+3 E_{1 u}+A_{2 g}+3 B_{2 u}+3 B_{1 g}+A_{1 u}$. Of these, only the $A_{2 u}$ and $E_{1 u}$ modes will be infrared active in an isolated ring, and those of $A_{1 g}, E_{1 g}$, and $E_{2 g}$ in the Raman. For instance, the number of $A_{1 g}, B_{2 g}$ and of $B_{1 u}, B_{2 u}$ modes is inverted in analysis of $\mathrm{P}_{6} \mathrm{O}_{18}$ ring in $\left[\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18}$. $2 \mathrm{H}_{2} \mathrm{O}$ (2). Nevertheless crystals of the later compound belong to the C_{i} space group and there is one $\mathrm{P}_{6} \mathrm{O}_{18}$ ring per unit cell, at a site of C_{i} symmetry. Therefore the selection rules governing $\mathrm{P}_{6} \mathrm{O}_{18}$ in the solid are the same as they would be for the free gaseous groups. This most fortunate
case allows the interpretation of the spectra of other compounds by correlation with the normal frequencies of the $\mathrm{P}_{6} \mathrm{O}_{18}^{6-}$ ring anion. Furthermore, the $\mathrm{P}_{6} \mathrm{O}_{18}$ in the title compound has the same C_{i} local symmetry. The IR spectrum of $\left[\mathrm{C}_{6} \mathrm{H}_{19} \mathrm{~N}_{3}\right]_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is depicted in Fig. 6. The observed frequencies reported in Tables 6 and 7 are assigned according to the following features deduced from the selection rules using molecular and site symmetries and from the literature (2,16-21): (i) Since the same atomic motions are involved in the different cyclophosphoric ring anions, the IR spectra of organic cyclohexaphosphates are divided into three regions. Frequencies in the range 4000-1340 cm^{-1} are attributed to $\mathrm{O}(\mathrm{N}, \mathrm{C})-\mathrm{H}$ stretching and bending modes, those ranging from 1340 to $670 \mathrm{~cm}^{-1}$ to asymmetric and symmetric stretching OPO^{-}and POP atomic groups in $\mathrm{P}_{6} \mathrm{O}_{18}$, and those below $670 \mathrm{~cm}^{-1}$ to bending, translation, and rotation of the $\mathrm{P}_{6} \mathrm{O}_{18}$ ring. NH_{3} torsion and $\mathrm{C}-\mathrm{C}$ bending may occur in the latter region. (ii) The $A_{2 u}, B_{1 u}, B_{2 u}$, and $E_{2 u}$ inactive modes in the $D_{6 h}$ molecular group will be active in the C_{i} site symmetry. Each single mode transforms into the A_{u} mode, whereas $E_{2 u}$ splits, like $E_{1 u}$, into a doublet ($2 A_{u}$). (iii) The $12 A_{u}$ (IR active) modes are distributed as a single and a doublet in each region of the following four stretching domains: $1340-1180 \mathrm{~cm}^{-1}$ for $\nu_{\mathrm{as}} \mathrm{OPO}^{-}$, $1180-1080 \mathrm{~cm}^{-1}$ for $\nu_{\mathrm{s}} \mathrm{OPO}^{-}, 1060-940 \mathrm{~cm}^{-1}$ for $\nu_{\mathrm{as}} \mathrm{POP}$, and $850-680 \mathrm{~cm}^{-1}$ for $\nu_{\mathrm{s}} \mathrm{POP}$. When the symmetry is lowered, the number of fundamentals is increased by activation of inactive modes with splitting of internal modes.

TABLE 7
Tentative Assignment of the Observed IR Frequencies
Outside the Stretching Domain of the $\mathrm{P}_{6} \mathrm{O}_{18}$ Ring Anion

$\bar{\nu}\left(\mathrm{cm}^{-1}\right)$	Attributions	$\bar{\nu}\left(\mathrm{cm}^{-1}\right)$	Attributions
$\left.\begin{array}{l} 3436 \mathrm{~m} \\ 3340 \mathrm{~m} \\ 3180 \mathrm{w} \\ 3020 \mathrm{~m} \\ 2924 \mathrm{vw} \\ 2860 \mathrm{vw} \\ 2700 \mathrm{w} \\ 2740 \mathrm{vw} \\ 2700 \mathrm{w} \\ 2540 \mathrm{w} \\ 2500 \mathrm{w} \\ 2350 \mathrm{vw} \\ 2240 \mathrm{vw} \\ 2100 \mathrm{vw} \\ 1665 \mathrm{vw} \\ 1650 \mathrm{w} \\ 1630 \mathrm{~m} \\ 1600 \mathrm{~m} \\ 1540 \mathrm{vw} \\ 1530 \mathrm{~m} \end{array}\right\}$	$\begin{gathered} \nu\left(\mathrm{OH}_{2}\right)+\nu\left(\mathrm{NH}_{3}\right) \\ + \\ \nu\left(\mathrm{NH}_{2}\right)+\nu(\mathrm{NH}) \\ + \\ \nu\left(\mathrm{CH}_{2}\right) \end{gathered}$ Bands of combination and harmonics $\begin{gathered} \delta\left(\mathrm{OH}_{2}\right)+\delta\left(\mathrm{NH}_{3}\right) \\ + \\ \delta\left(\mathrm{NH}_{2}\right) \end{gathered}$	$\left.\begin{array}{l} 1490 \mathrm{w} \\ 1470 \mathrm{~m} \\ 1460 \mathrm{sh} \\ 1435 \mathrm{vw} \\ 1410 \mathrm{vw} \\ 1400 \mathrm{vw} \\ 1380 \mathrm{vw} \\ 1340 \mathrm{w} \\ 1320 \mathrm{sh} \\ 611 \mathrm{w} \\ 545 \mathrm{~s} \\ 532 \mathrm{~s} \\ 514 \mathrm{~m} \\ 504 \mathrm{~m} \\ 470 \mathrm{sh} \\ 425 \mathrm{~m} \\ 385 \mathrm{w} \\ 365 \mathrm{w} \\ 320 \mathrm{~m} \end{array}\right\}$	$\begin{gathered} \delta\left(\mathrm{CH}_{2}\right)+\rho\left(\mathrm{CH}_{2}\right) \\ + \\ \omega\left(\mathrm{CH}_{2}\right) \end{gathered}$ $\begin{gathered} \delta\left(\mathrm{OPO}^{-}\right)+\delta(\mathrm{POP}) \\ + \end{gathered}$ NH_{3} rocking $+$ $\mathrm{C}-\mathrm{C}$ bending $+$ NH_{3} torsion

Note. s, strong; m, middle; w, weak; vw, very weak; sh, shoulder.

Thus, one should bear in mind that the total number of observed bands in the stretching domain is not definitely significant since there are two $\mathrm{P}_{6} \mathrm{O}_{18}$ groups in the unit cell. In accordance with these considerations, the IR spectrum can be assigned as follows:
-The observed IR frequencies (single $1192 \mathrm{~cm}^{-1}$, doublet $1247-1261 \mathrm{~cm}^{-1}$) are assigned to the $A_{u}\left(C_{i}\right)$ modes resulting from the transformation of $A_{2 u}\left(D_{6 h}\right)$ and the activation with splitting of $E_{2 u}\left(D_{6 h}\right)$ modes.
-The splitting of $E_{1 u}\left(D_{6 h}\right)$ and the activation of $B_{1 u}$ $\left(D_{6 h}\right)$ and $B_{2 u}\left(D_{6 h}\right)$ modes give rise to doublet and single IR bands, respectively, assigned as $1151 \mathrm{~cm}^{-1}$ and $1131-$ $1116 \mathrm{~cm}^{-1}$ for $\nu_{\mathrm{S}} \mathrm{POP}, 1018 \mathrm{~cm}^{-1}$ and $1061-1045 \mathrm{~cm}^{-1}$ for $\nu_{\mathrm{as}} \mathrm{POP}$, and $755 \mathrm{~cm}^{-1}$ and $800-788 \mathrm{~cm}^{-1}$ for $\nu_{\mathrm{s}} \mathrm{POP}$, with $\Delta \nu$ in doubled less than $17 \mathrm{~cm}^{-1}$.
-Bands appearing in $\nu_{\mathrm{as}} \mathrm{POP}$ and $\nu_{\mathrm{s}} \mathrm{POP}$ stretching domains at frequencies of 997,946 , and $684 \mathrm{~cm}^{-1}$ may be considered either $\nu(\mathrm{C}-\mathrm{C})$ stretching or induced by some coupling between the two $\mathrm{P}_{6} \mathrm{O}_{18}$ groups of the cell.
-A detailed interpretation of bands out of the $\mathrm{P}_{6} \mathrm{O}_{18}$ stretching domain is rather difficult. Nevertheless, the comparison with spectra of other organic and inorganic compounds (22-27) leads to the frequencies reported in Table 7 with assignments of tentative character.

VI. CONCLUSION

The bis[1-(2 ammoniumethyl)-piperazinum] cyclohexaphosphate hexahydrate has been prepared in single crystal form and investigated by X-ray diffraction, thermal analyses, and vibrational spectroscopy. The geometrical characteristics of both inorganic and organic ions are examined. The main feature of this structure is the formation of anionic layers realized from $\mathrm{P}_{6} \mathrm{O}_{18}^{6-}$ that aggregates through water molecule hydrogen bonds in the (\mathbf{a}, \mathbf{b}) plane. These layers are connected together through a short hydrogenbond network originating from organic cations. Thermal behavior investigated by TG-DTA and DSC analyses shows that the title compound is not very stable, since it led to a constant tetrahydrate phase when it was left standing for six months under normal conditions. The infrared study based on theoretical group analysis and on data in literature allows the interpretation of the IR spectrum.

ACKNOWLEDGMENTS

The authors express their gratitude to Dr. T. Jouini, Département de Chimie, Faculté des Sciences de Tunis, Tunisia, for the X-ray data collection.

REFERENCES

1. U. Schülke and R. Kayser, Z. Anorg. Allg. Chem. 531, 167 (1985).
2. A. Gharbi, A. Jouini, and A. Durif, J. Solid State Chem. 114, 42 (1995).
3. M. Charfi and A. Jouini, Acta Crystallogr. C to appear (1996).
4. G. M. Sheldrick, Acta Crystallogr. A 46, 467 (1990).
5. G. M. Sheldrick, "SHELXL93. Program for the Refinement of Crystal Structures." University of Göttingen, Germany.
6. M. T. Averbuch-Pouchot and A. Durif, Acta Crystallogr. C 42, 129 (1986).
7. A. Jouini, M. Dabbabi, and A. Durif, J. Solid State Chem. 60, 6 (1985).
8. M. T. Averbuch-Pouchot, Z. Anorg. Allg. Chem. 570, 138 (1989).
9. A. Durif, "Crystal Chemistry of Condensed Phosphates." Plenum, New York, 1995.
10. M. T. Averbuch-Pouchot and A. Durif, C. R. Acad. Sci. 308(2), 1699 (1989).
11. M. T. Averbuch-Pouchot, Acta Crystallogr. C 47, 1150 (1991).
12. O. Kennard and R. Taylor, J. Am. Soc. 104, 5063 (1982).
13. G. R. Desiraju, Acc. Chem. Res. 24, 290 (1991).
14. T. Steiner and W. Saenger, J. Am. Soc. 115, 4540 (1993).
15. T. Steiner and W. Saenger, Acta Crystallogr. B 50, 348 (1994).
16. M. Rzaigui, J. Solid State Chem. 89, 340 (1990).
17. A. M. Prima, Opt. Spectrosc. 9, 236 (1960) [Opt. Spectrosc. 9, 452 (1960)].
18. F. Matossi, J. Chem. Phys. 17(8), 679 (1949).
19. A. N. Lazarev, Opt. Spectrosc. 12, 28 (1968) [Opt. Spectrosc. 12, 60 (1968)].
20. A. N. Lazarev, "Vibrational Spectra and the Structure of Silicates." Sciences Press, Leningrad, Russia, 1968.
21. A. Rulmont, R. Cahay, M. Liegeois-Duyckaerts, and P. Tarte, Eur. J. Solid State Inorg. Chem. 28, 207 (1991).
22. F. Scheinmann, "An Introduction to Spectroscopic Methods for the Determination of Organic Compounds," Vol. 1, Pergamon, New York, 1970.
23. N. B. Colthup, L. H. Daly, and S. E. Wilberley, "Introduction to Infrared and Raman Spectroscopy," 2nd ed. Academic Press, New York, 1975.
24. Z. Iqbal, H. Arend, and P. Washter, J. Phys. C. Solid State Phys. 14, 1497 (1981).
25. S. Skaarup and W. Berg, J. Solid State Chem. 26, 198 (1989).
26. D. Philip and G. Aruldhas, J. Solid State Chem. 83, 198 (1981).
27. Y. Abid, M. Kamoun, A. Daoud, and F. Romain, J. Raman Spectrosc. 21, 709 (1990).

[^0]: ${ }^{1}$ To whom correspondence should be addressed.

